Reg. No: \square
SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Regular \& Supplementary Examinations March-2023 PRINCIPLES OF ELECTRICAL CIRCUITS

(Electronics and Communication Engineering)
Time: 3 hours
(Answer all Five Units $5 \times 12=60$ Marks)
UNIT-1
1 a Determine the Equivalent inductance when the two inductor are connected in $\begin{array}{llll}\text { CO1 } & \text { L3 } & 3 M\end{array}$ series and parallel.
b State and prove Kirchhoff's current law with suitable examples.
CO1 L3 3M
c Explain in detail about delta to star transformation of a resistive network.
CO1 L3 6M
OR
2 a Determine the current in 10Ω resistor for the following network by using KCL.

b Write the Mesh Current equations in the Circuit shown in figure below, and determine the currents.

UNIT-II
3 Verify Superposition Theorem for 4Ω resistor for the following circuit.

Q.P. Code: 20EE0253

OR
4 a State Norton's theorem.
CO 3
L1 2 M
b Find Norton's equivalent circuit across $A B$ for the circuit shown.
CO3
L3 5M

c Find the Norton's equivalent for the circuit shown below.
CO3 L3 5M

UNIT-III
5 a Define Time constant of RL circuit.
b Define Time constant of RC circuit.

OR

6 a A series RL circuit with $R=30 \Omega$ and $L=15 H$ has a constant voltage $V=60 \mathrm{v}$ applied at $t=0$. Determine the current " T ", voltage across resistor and voltage across inductor.
b A Series RL circuit with $\mathrm{R}=50 \Omega$ and $\mathrm{L}=10 \mathrm{H}$ has constant voltage $\mathrm{V}=100$ volts applied at $t=0$ by the closing the switch find the complete current.

UNTT-IV

7 a Derive an expression for average values of sine wave form.
b An alternating current is expressed as $I=14.14 \sin 314 t$. Determine.
(i) Maximum current (ii) RMS current (iii) Frequency
(iv)Instantaneous current when $\mathrm{t}=0.02 \mathrm{msec}$.

OR
8 a Define Admittance and impedance.
b Derive an expression for the current and impedance for a series RC circuit excited by a Sinusoidally alternating voltage. Draw the phasor diagrams.

UNIT-V
9 Explain about Constant-K High-pass filter in detail.
OR
10 a Explain about short-circuit parameters.

CO4 L4 6M

CO5 L4 6M
$\operatorname{CO5} \mathrm{L} 2 \quad 4 \mathrm{M}$
CO5 L4 8M

CO6 L2 12M
$\begin{array}{lll}\mathrm{CO} 6 & \mathrm{~L} 2 & 6 \mathrm{M} \\ \mathrm{CO} & \mathrm{L} 2 & 6 \mathrm{M}\end{array}$
$\begin{array}{lll}\text { CO6 } & \mathrm{L} 2 & 6 \mathrm{M} \\ \mathrm{CO} & \mathrm{L} 2 & 6 \mathrm{M}\end{array}$
CO4 $14 \quad 6 \mathrm{M}$
CO4 1. $4 \quad 6 \mathrm{M}$

CO4 L4 6M
$\operatorname{CO5} \mathrm{L} 2 \quad 6 \mathrm{M}$

